

A Challenging Case of Polyuria

Anushya Jeyabalan, MD

Assistant Physician
Division of Nephrology
Massachusetts General Hospital (MGH)
Instructor in Medicine
Harvard Medical School

- Jefferson Medical College/Thomas Jefferson University
- Internal Medicine Residency @ Tufts Medical Center
- General Nephrology Fellowship @ Hospital of the University of Pennsylvania
- Glomerular Disease Fellowship @ Columbia University
- Attending Nephrologist @ MGH Vasculitis & Glomerulonephritis
 Center
- Instructor in Medicine @ Harvard Medical School
- Clinical and Research Focus: Glomerular diseases

DISCLOSURES

Scientific advisory board for Calliditas Therapeutics

OBJECTIVES

- Develop a framework for approaching the evaluation of a patient with polyuria
- Identify potential causes and complications of polyuria

CASE

47M with metastatic de novo prostate cancer (mets to liver/lungs) admitted to MGH

- Rapid progression with development of malignant sacral mass with nerve root compression
- On degarelix (GnRH antagonist) and docetaxel (MT inhibitor)
- Awaiting liver biopsy to assess for small cell transformation

History

- Initially admitted with septic shock and peritonitis
- Underwent emergent ex-lap, found to have perforated sigmoid colon for which he underwent sigmoidectomy and end colostomy (1.5L stool output per day thereafter)
- Admitted to SICU
- Transiently on vasopressors (vaso 0.04 monotherapy)
- LR/NS boluses given for fluid resuscitation while NPO
- Subsequently found to have MSSA/PsA bacteremia + intra-abd cultures grew Candida glabrata
- Stabilized off pressors and transferred to the floor

History

- Subsequently developed acute onset polyuria
- **Daily UOP of 4-6L** for 8 days
- Concomitant hypokalemia despite consistent IV/PO repletion
- No LUTS, dysuria, urgency, frequency
- Felt significant thirst after days of being NPO with NGT in place

History

- Patient was uncharacteristically **agitated/angry and frustrated** with care, often limiting history
- No endorsed sx aside from polyuria and pain in his back/at the surgical site
- No ostomy issues; stable output

Past Medical History

PMH: HLD, HTN

PSH: Transperineal prostate biopsy, vasectomy, rhinoplasty, wisdom tooth extraction

SH: No tobacco, rare alcohol, occasional marijuana for nausea

FH: No history of kidney disease

Allergies: Chlorhexidine, shellfish

Home medications: APAP, amlodipine, melatonin, simethicone, tamsulosin 0.8mg daily

Inpatient medications: acetaminophen, cefazolin, LMWH ppx, fentanyl patch, omeprazole, pip-tazo, standing Kcl 40meq TID, phos-nak 1 packet QID

Physical Exam

VS T 36.8 | HR 86 | **BP 154/90** | RR 18 | SpO2 98% on RA | 86.9kg

General – NAD

HEENT – MMM, sclera anicteric

<u>Pulmonary</u> – comfortable on RA, CTAB

Cardiac – tachycardic, no m/r/g;

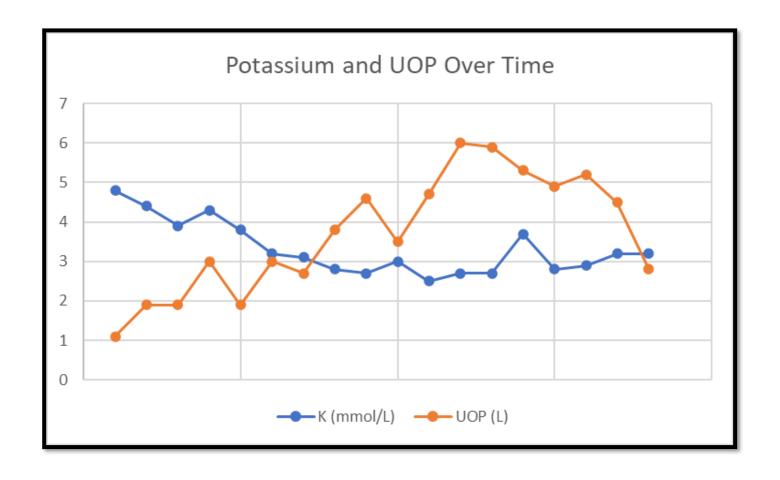
<u>Abdomen</u> – soft, non-distended; non-tender

Skin – no rashes or erythema visible

Extremity WWP, no edema

Neuro: alert and oriented to person, place, time, and situation

Psych: Patient with intermittent acute bursts of agitation and irritation



Laboratory values

- UOsm on day prior to consult: 281
- UOsm day of consult: 294
- UNa 57, UK 57
- UA 1+ blood, no protein
- Cr 0.3-0.4 at the time of consult (after initial AKI, peak 1.15 on day of presentation)
- On presentation: Na 134, K 4.8, Cl 98, HCO3 24, BUN 39, Cr 1.15, Pi 5.1, Mg
 2.2, Ca 9.9, Albumin 2.5
- On consultation: Na 141, K 2.7, Cl 100, HCO3 30, BUN 8, Cr 0.36, Glu 145, Ca 7.0, Albumin 2.5, Pi 1.5

Potassium trend

Case Summary

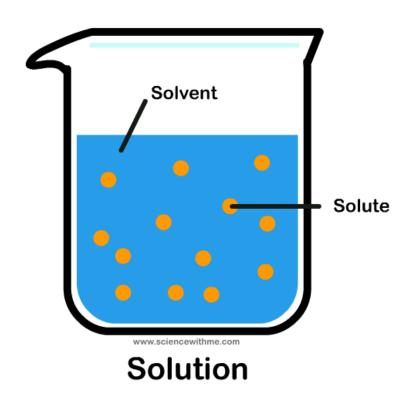
48M with metastatic prostate cancer with mets to liver/lungs admitted to the hospital with disease progression now with acute onset polyuria and associated severe hypokalemia.

Daily UOP (by Foley) confirmed to be 4-6L

Labs notable for low potassium despite IV/PO repletion

Questions

- What would be the potential causes of the patient's polyuria?
- What additional tests would you send to evaluate causes of acute onset polyuria?
- Why is he persistently hypokalemic?


Question for the audience

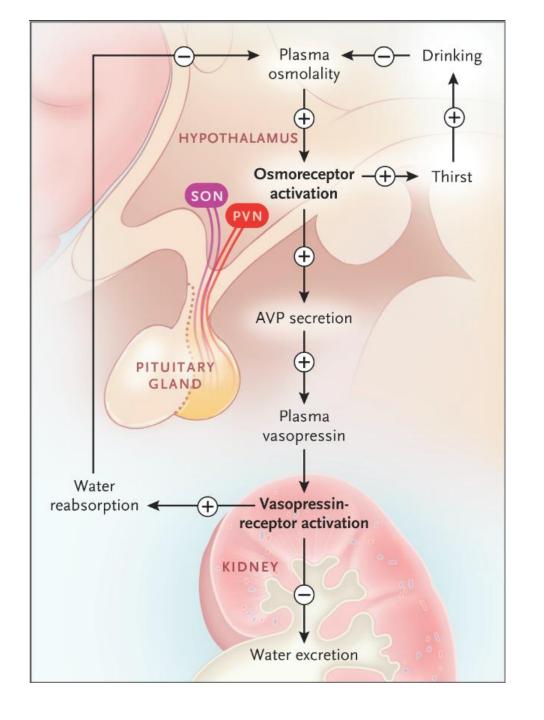
What is the next best step in evaluation of his polyuria?

- A. Check urine electrolytes
- B. Give DDAVP
- C. Check urine osmolality
- D. Administer water deprivation test

Urine osmolality

	Term	Definition	Unit	Measurement Basis
•	Osmolality	Number of solute particles per kilogram of solvent	mOsm/kg H₂O	Based on mass
	Osmolarity	Number of solute particles per liter of solution	mOsm/L	Based on volume

Homeostasis


Serum osmolality is tightly regulated (~285–295 mOsm/kg)

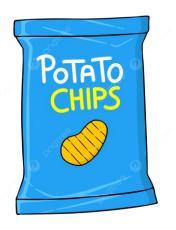
Water intake (via drinking, metabolism) and solute load (diet, catabolism) must be matched by output

The **kidney adjusts urine osmolality** (typically 50–1200 mOsm/kg) to maintain balance

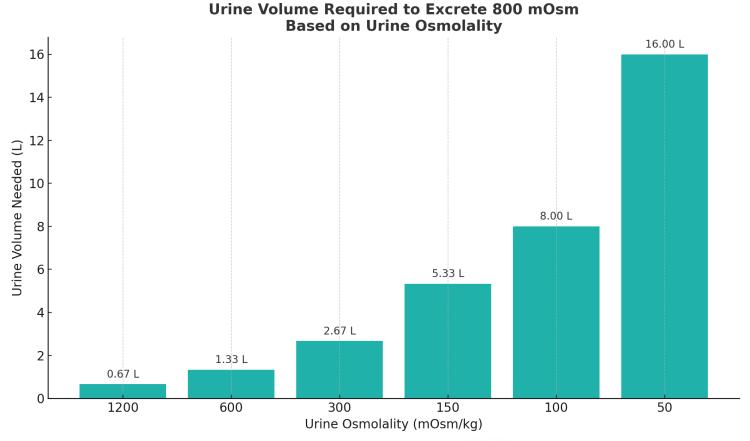
- •If water intake is high → dilute urine (↓ urine osm)
- •If water intake is low or solute load is high → concentrated urine (↑ urine osm)

Knepper, Mark A., Tae-Hwan Kwon, and Soren Nielsen. "Molecular physiology of water balance." *New England Journal of Medicine* 372.14 (2015): 1349-1358.

How do I estimate the urine volume produced in a day? (assuming no other intake/losses)



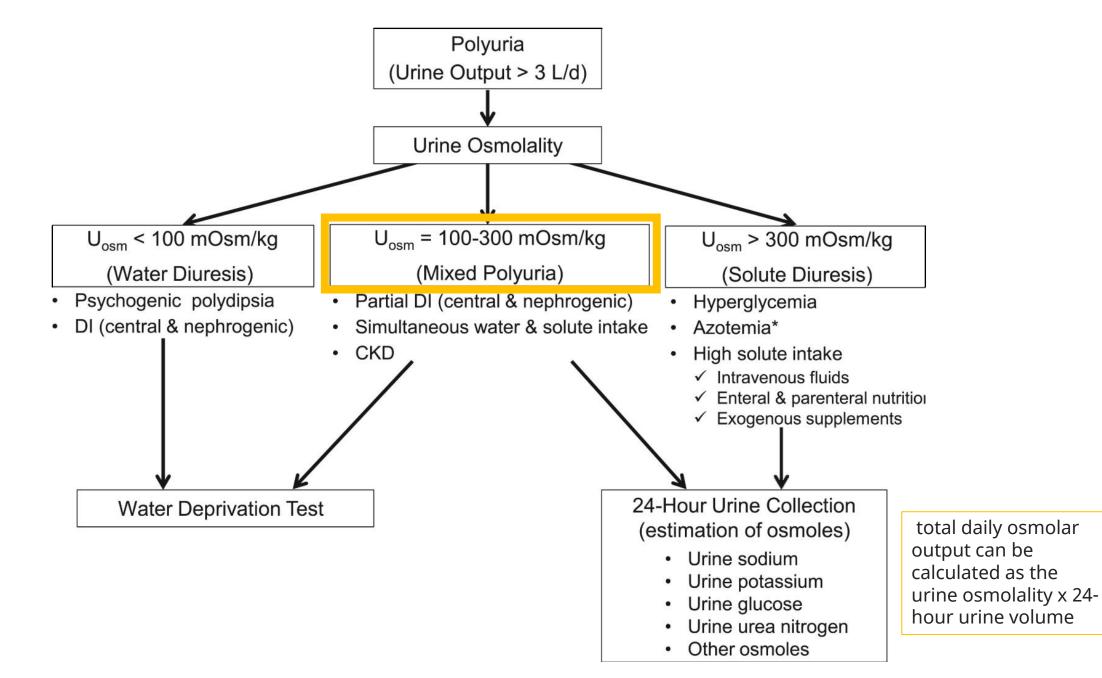
800 mOsm of NaCl


- A. It depends on **serum osmolality**
- B. It depends on **total body water**
- C. It depends on urine osmolality
- D. It depends on **GFR**
- E. It depends on **ADH secretion rate**

What goes in must come out

800 mOsm of NaCl To maintain serum osmolality

Back to our patient


48M with metastatic prostate cancer with mets to liver/lungs admitted to the hospital with disease progression now with acute onset polyuria and associated severe hypokalemia.

Daily UOP (by Foley) confirmed to be 4-6L

Labs notable for low potassium despite IV/PO repletion

UOsm 294 mOsm/Kg [reference range: 150 - 1,150 mOsm/kg H20]

Bhasin, Bhavna, and Juan Carlos Q. Velez. "Evaluation of polyuria: the roles of solute loading and water diuresis." *AJKD 2016*

Causes of polyuria in inpatient setting

- Volume resuscitation
- Hyperglycemia
- Post-ATN
- Diuretics, SGLT2i
- Post-obstruction
- High protein feeds
- Mannitol
- Renal salt wasting due to cisplatin or cerebral salt wasting

Work up

DDAVP trial

Uosm pre DDAVP: 295

DDAVP 2mcg IV given @ 11.45am

Post DDAVP

Uosm @ 12.15pm: **351**

Uosm @ 12.47pm: **354**

Uosm @ 1.15pm: **357**

Uosm @ 1.45pm: **344**

Indicative of partial arginine vasopressin deficiency (partial central diabetes insipidus), though cause of this is unclear

24h UOP (7am - 7am): 4275ml Pre DDAVP - total osmolar load for past 24h = ~1180 mOsm

Labs: K 3.3, phos 1.6, Mg 1.7

Causes of polyuria

- Volume resuscitation
- Hyperglycemia
- Post-ATN
- Diuretics, SGLT2i
- Post-obstruction
- High protein feeds
- Mannitol
- Renal salt wasting due to cisplatin or cerebral salt wasting

Transient Diabetes Insipidus After Discontinuation of Vasopressin in Neurological Intensive Care Unit Patients: Case Series and Literature Review

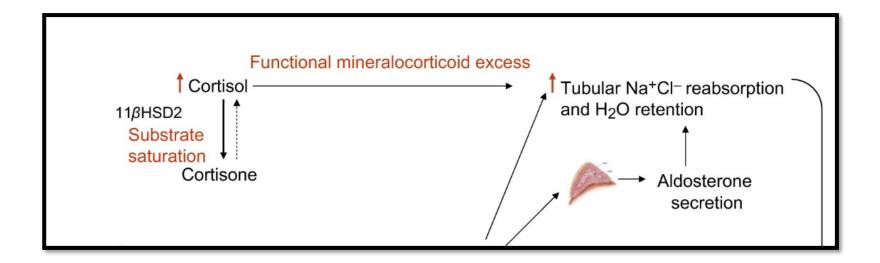
Michael A. Bohl¹, James Forseth², Peter Nakaji¹

World Neurosurgery, 2017, 97, 479-488

ONLINE CLINICAL INVESTIGATIONS

Diabetes Insipidus After Discontinuation of Vasopressin Infusion for Treatment of Shock

Ferenchick, Hannah MD¹; Cemalovic, Nail MD¹; Ferguson, Nadia PharmD²; Dicpinigaitis, Peter V. MD¹


Author Information ⊗

Critical Care Medicine 47(12):p e1008-e1013, December 2019. | DOI: 10.1097/CCM.000000000004045

- Historically seen in patients post neurosurgery
- In more recent times (especially COVID era, for reasons yet unclear) many case reports in patients without any clear predisposing factor
 - Length of vasopressin exposure in chronically critically ill Covid patients
- In CCM paper -- >1300 patients on vaso, no NSGY patients, 2 developed DI
 - Pts included septic or cardiogenic shock
- Typically, close temporal association with vaso cessation
- Often self-limited
- May be more common than previously thought, but missed due to transient nature of injury + limited familiarity with the diagnosis

Hypokalemia in polyuria

- With malignancy associated ectopic ACTH, production of glucocorticoids/mineralocorticoids escalates rapidly
- Thus, classical signs of Cushing's syndrome on exam often absent
- Hypokalemia + metabolic acidosis most common (only 1:3 have both)
 - 2/2 excessive cortisol binding mineralocorticoid receptor
 - Should consider in tumors that are rapidly metastasizing/expanding

Cushing's and Polyuria

- Complex mechanistically impaired urinary concentration is key
- Note that hypoK itself increases AVP-R (chicken vs egg)
- Tissue catabolism thought to drive urea diuresis
- Mineralocorticoid effect
 - Downregulate aquaporin (AQP2) in apical membrane of CD
 - Thus reducing water reabsorption --> polyuria
- Glucocorticoid effect
 - Downregulate urea transporters --> impair urine concentration --> decrease
 UOsm / polyuria
 - Glucocorticoids suppress ADH secretion --> polyuria

AVP and Cortisol

- DI is often "masked" in patients with AI
- Precise mechanism has been unclear
 - Glucocorticoid DEFICIENCY --> increase plasma AVP levels in rats
 - Water permeability of CD increases after adrenalectomy in AVP-D rats
- Case reports of IV high dose hydrocortisone (glucocorticoid EXCESS) --> polyuria / reduced AVP
- Clearly, close regulation between glucocorticoid / mineralocorticoid excess or deficiency and AVP production
 - We are only beginning to understand the mechanism

Hypokalemia

Polyuria

Case Reports

> Pituitary. 2009;12(3):280-3. doi: 10.1007/s11102-008-0100-z.

Cushing's syndrome due to ectopic ACTH production by (neuroendocrine) prostate carcinoma

R A Alwani ¹, S J C M M Neggers, M van der Klift, M G A Baggen, G J L H van Leenders, M O van Aken, A J van der Lely, W W de Herder, R A Feelders

Primary polydipsia

Diagnosis

- AM cortisol: 96.3 --> 187.0 (ref range: normal AM values: 5-25 ug/dL)
- ACTH: 782 (profoundly elevated)
- 24h urine cortisol: ~7k (profoundly elevated)
- Liver biopsy high grade neuroendocrine tumor (transformation of androgen deprivation therapy resistant prostate cancer)
- Biopsy did NOT stain positive for ACTH
 Immunohistochemical staining for ACTH commonly does not reflect biological behavior of a tumor
 Started on steroidogenesis inhibitor (ketoconazole --> osilodrosat)

Ectopic ACTH production by metastatic prostate cancer

Follow up

- Seen by Endocrine
- Started on ketoconazole briefly then transitioned to osilodrostat
- Added spironolactone for persistent hypokalemia
- Unfortunately, he later had complication of GI bleed, by septic shock and passed peacefully with family at bedside

Take home points

- Polyuria can be due to water diuresis or solute diuresis
- In hospitalized patients (especially those with cancer), considering sources of ectopic ACTH is important in patients with hypokalemia or polyuria (important to recognize that these can present atypically/acutely)

REFERENCES

Bhasin, Bhavna, and Juan Carlos Q. Velez. "Evaluation of polyuria: the roles of solute loading and water diuresis." *American Journal of Kidney Diseases* 67.3 (2016): 507-511.

Knepper, Mark A., Tae-Hwan Kwon, and Soren Nielsen. "Molecular physiology of water balance." *New England Journal of Medicine* 372.14 (2015): 1349-1358.

Vokoun, Chad W., et al. "Case 1-2023: A 49-Year-Old Man with Hypokalemia and Paranoia." *New England Journal of Medicine* 388.2 (2023): 165-175.

